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1 INTRODUCTION

In this section, we will discuss the problem the foundation of our project is based around and our proposed
solution. In the following section, we will discuss our approach to the project, the reasoning behind any
decisions that led to that approach, and the context in which our solution lies. In section three, we will
introduce the high level design for our project and how we approached various tradeoffs and technical
challenges. Section four introduces how we went about completing the project in terms of planning our two
semesters and what resources we needed to draw from. In section five, we dive into the detailed design in
terms of the functional modules that make up our final implementation. Finally, in section six, we detail
how we tested our solution and verified that it was complete and robust.

1.1 PROBLEM STATEMENT

The primary aim of our project is to incentivize renewable energy generation from individuals and small
businesses by facilitating peer to peer trading of surplus energy. By creating a free market environment for
energy trading, individuals will think more about how they produce and consume energy, and will be more
inclined to generate energy of their own. With this new understanding and market accessibility, energy
prices will fluctuate to be at parity with their true value, not solely what the utility company dictates. A
more detailed description of our implementation of this free market solution is covered in the design
portions of this document.

Our secondary goal is aiding in the decentralization of the power generation market. The
interconnectedness of grids has already contributed to the reduction of blackouts, as one individual power
plant or utility company is not solely responsible for all energy generation. At the time of writing, a Chicago
grid can pull from a Toronto plant if they approach their capacity curve. Our system can aid this
interconnectedness a degree further, as the power loss and cost to transfer energy a mile up the road would
be less than the power loss and cost to move that energy from Toronto to Chicago. A more decentralized
grid would help the overall grid to be robust to fluctuations, as the sources of energy would be widespread
and independent. Figure 1 displays how this distributed energy approach allows the energy generation to
more accurately track the demand.
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Figure 1: Bulky vs. Targeted Deployment of Energy Resources [7]




The connection between decentralized energy generation and our solution is clear. We hope that an open
market will allow individuals to operate their own renewable energy sources like solar panels or wind
turbines with increased economic feasibility. If this goal is realized, energy production will be less reliant on
large plants, giving consumers a more diverse array of energy sources than those currently available.

An additional side effect of incentivizing renewable energy generation is that it will also contribute to
reducing climate change. Renewable energy usage is seen as one of the key ways to target this problem, but
a large portion of worldwide energy does not come from this “clean” energy generation. To change this, the
generation of renewable energy needs to be more accessible to individuals and businesses, rather than only
those who have the resources and capabilities of a large energy company.

Our project can be broken into two high-level components: a simple IoT (Internet of Things) capable power
meter and software to facilitate peer to peer trading of surplus energy. Individuals using our hardware and
software will be able to buy or sell surplus energy at rates favorable to those offered by the utility company.

1.2 OPERATING ENVIRONMENT

The operating environment for our solution was a relevant factor when designing the final implementation.
The smart meter was designed with the assumption that the consumption and production lines are in the
same location within a weather-safe area.

On the software side, the operating environment will be the economic and political climate in which our
solution is being used. There are many legal factors that could come into play with this kind of trading. Use
of the utility company’s infrastructure or trading between different cities, states, countries is one example.
These are all factors that would need to be explored in further detail if this project were to be expanded
beyond the proof of concept.

As we pass our progress to our client, Open Energy, more focus can be put into refining the robustness of
the hardware and making sure our software implementation integrates effectively with the economy and
politics of the location where our solution is being used.

1.3 INTENDED USERS AND INTENDED USES

The users can be split into two groups, which we refer to as “producers” and “consumers.” The producers
are the users who will supply excess energy that they produce into the system. Producers look to maximize
the profit that they can create from producing energy, and our open energy market will enable them to do
just that. In order to best serve these users, we are minimizing the transaction costs and maximizing the
ease with which they can find buyers for their energy. The consumers are the users who will be consuming
the excess energy that producers create. We can best serve them by minimizing the transaction costs and
making it as easy as possible for them to find producers to provide them energy.

The intended use is to incentivize generation of energy by creating an accessible market for both producers
and consumers. The intended users will expand to include anyone with an electrical service connected to
their home or business. Our intent is simply to attract as many users that already have direct generation
installations as possible. More producers in our user base will allow us to obtain more consumers by making
the market more competitive and attractive. In due course, the flow of consumers to the marketplace will



encourage more people to become producers and install their own direct generation setups. This circular
growth will eventually lead to us reaching our goal of widespread incentivisation of direct generation.

1.4 ASSUMPTIONS AND LIMITATIONS

Because our goal is to make an impact on large scale issues like the energy market and climate change, it is
important that we clarify what restrictions exist with our solution, and what aspects we are leaving for
future work. The following list gives the most important of these assumptions and limitations regarding the
scope of our project.

Assumptions:

e Enacting the distribution of power after our transaction is completed is outside of the scope of our
project, including any new power equipment that could be required on the distribution side

e For a full implementation of our project, an agreement will have to be completed with the utility
company owning the power infrastructure so they will allow these transactions to take place

e Failing to reach an agreement with a regular utility, an agreement will have to be completed with a
developer of a subdivision, whom may own the power infrastructure of said subdivision

e The level of testing that we will complete will be within an individual municipality, so
interstate/international trading laws will not be applicable

Limitations:

e The cost of the [oT smart power meter must not exceed that of the average power meter used in
Ames, IA (the area of testing)

e The purchase of all hardware components and software licenses must be approved by our client and
must not exceed the amount of funds they have allocated for the project

e The cost for user operation of our smart power meter must be minimal to make the implementation
worthwhile for the customer measured by the cost benefit of the system

1.5 END PRODUCT AND OTHER DELIVERABLES

Smart Meter

For the implementation of our marketplace, an Ethernet or WiFi-enabled smart meter will need to be
installed at a user’s property to read the flow of energy on the production and consumption lines into their
property. The smart meter connects to the internet, providing the necessary data to the software component
of our project. It accomplishes this by reading the current and voltage values on both the input and output
lines of a user’s system and reporting this to our databases. Along with the basic data acquisition and
communication functions, the computing module of the smart meter is capable of displaying vital
information to the user via a display screen directly on the meter.

Energy Marketplace Implementation

Power transactions, both consumption and production, are made and recorded using a non-relational
database which is manipulated by a marketplace controller on our backend system, which is a Ubuntu Linux
environment hosted on AWS. This system coordinates with the users marketplace settings which live in the
web interface for seamless configuration.



Web/Mobile Application

Users manage their power transactions through a web application, which interacts with the energy
marketplace through REST API calls, receiving and mutating information through a secure MongoDB
connection. This application allows the user to monitor their energy use and production through viewing
different energy charts. The user may also buy and sell energy through a marketplace interface. Users are
also able to download personal usage and production statistics, which are actively aggregated within the
MongoDB. The web application includes login and account creation capabilities.

2 APPROACH AND STATEMENT OF WORK

In this section, we present our project requirements, options we considered for meeting those requirements,
and our proposed approach.

2.1 FUNCTIONAL REQUIREMENTS:
The requirements that had to be completed for our project to have an operational implementation are:

1. AnIoT Smart Meter device
a. Device to read power at the meter and send this information to the cloud at second
granularity
2. Application on web and mobile for visualizing data and configuring marketplace settings
a. The ability to see real-time consumption and production data
b. Access to configure settings to which the marketplace will trade on
¢. The ability to download data for offline analysis
3. Backend processing block for clearing market transactions and managing user data

2.2 NON-FUNCTIONAL REQUIREMENTS:

The main qualitative elements of our project that we strived to achieve are as follows.
1. Ease of setup: Any user must be able to easily install and configure our hardware/software.
2. Portability: The web application must be usable on various platforms.

3. Robustness: The hardware must be able to withstand the conditions in which it is installed and be
able to respond to signal loss and power outages. The software must be tested to handle edge cases
and avoid fatal errors.

4. Scalability: The hardware and software must designed in such a way that it could handle a large
network of homes that would be required for a full implementation of our design.

5. Security: The anonymity of the users must be protected, and all transactions must be secure.



2.3 OVERVIEW OF THE STATE OF THE ART

We now present an overview of the previous work and literature that we have reviewed regarding
comparable technologies.

2.3.1 Literature review:

Our literature review was focused on understanding the current industry practices for distributed energy
related work. Our review was on both the software and hardware that the market had available. We go into
detail in the Home energy consumption solutions section below on the specific companies that are working
in this space.

For the software perspective there are a number of solutions that are available in separate applications.
Commonwealth Edison Company (ComEd) for example has a visualization tool for their customers. They
also provide a capability to download data. The broader community has begun endorses the Green Button,
which is a initiative for people to have the ability to download their energy data in a standardized format.

From the hardware side companies such as Sense provide hardware add-ons that can be used to track
energy consumption and production data. The Sense team also has a application for monitoring this data.
The following section provides a literature review with a focus on the marketplace and trading aspects.

2.3.2 Home energy consumption solutions:

TransActive Grid + LO3 Energy

LO3ENERGY

TransActive Grid is the IP holding company of LO3 Energy. The Consensys team previously teamed up with
LO3 Energy to test the viability of energy blockchain. In 2016 there was a blockchain energy implementation
in New York City, specifically the Brooklyn borough. The pair wired up two Brooklyn residences and traded
energy on the blockchain. The details of this transaction were left out due to IP implications from the
organization [7].

Besides the 2016 article LO3 energy has been relatively quiet about their progress. The gist from their end is
that energy blockchain is viable from a technical perspective. The Brooklyn Microgrid is now being brought
to other countries, most recently Germany.



Grid+

GRID

Grid plus is an Austin, TX based energy retailer. The parent company is New York City based ConsenSys.
Grid+ provides a smart argent and blockchain implementation. The smart agent is used to buy and sell the
GRID token. They also have another coin, BOLT. This coin is known as a stable coin. The advantage to stable
coins is while a cryptocurrency will readily fluctuate in price a stable coin reflects a more stable currency, in
this case the USD. A single BOLT is equivalent to a single USD. The end user will have the advantage of near
real time service and security of the blockchain while not having a wildly fluctuating cost of energy.

Grid+ however, does not have a peer to peer energy model. The business model they use is to cut
administrative costs from the distributor and retailer in the energy supply chain. From a technical
perspective the Grid+ energy blockchain implementation is using the ethereum blockchain [5]. The ERC20
token standard is their building block for the smart contract. The focus of their contracts is on the token
and ICO, while they have long term development outlines for their energy business.

SolarCity

SolarCity

SolarCity wrote a report [11] in which they explain the distributed energy environment and its subsequent
advantages. They specify that the distributed energy model is a net benefit for society through benefits
related to voltage and power quality, conservation voltage reduction, grid reliability and resiliency,
equipment life extension, and reduced energy prices. The hurdle they present is that the current utility
incentive model does not coincide with a distributed energy focus. To convert to their model they proposed
legislative changes.

Power Ledger

LEDGER




From the Power Ledger white paper [12], the Australian based energy blockchain startup looks to provide
peer to peer energy trading. They will facilitate these energy transactions with the ethereum blockchain.
Power Ledger provides very little technical documentation of their work, but boast a trading matching
algorithm, meter reading device and token sale.

2.4 POSSIBLE RISKS AND RISK MANAGEMENT

As we began the development of our project, there were a few concerns that we were aware of that had a
chance to hinder our progress. Though our team members have a wide array of backgrounds to serve as a
knowledge base for our project, a project of this magnitude inevitably has the possibility of unexpected
roadblocks or safety concerns. Our main concern for the hardware was safety in relation to interacting with
120/240VAC. We tried to minimize our interactions with high voltage lines, as well as making sure we had
physically secure and insulated testing environments when we had to interact with these voltages. For an
installation of our system in a home or business, a licensed electrician would most likely be required. We
also worked diligently to ensure that the software we wrote is error-free and secure, and we identified
security vulnerabilities that we were not able to fix, so that they can be addressed in future work.

Information security is also a very large concern with our project. The steps listed below were taken to
enhance the security of our project. Because of the large scope of the project, and the depth of some of the
security concerns, a portion of the security implementation will be left for future work.

2.4.1 Implemented work addressing risks

1. Smart Meter Information Transfer
a. API keys are used to ensure data is only received from registered smart meters
b. Server public-private key implementation used to prevent sniffing of posted data
2. Web
a. SSL used to secure web application API requests
b. Backend route authentication
i.  AuthToken passed with context in React to only allow verified users to access API
c. Prevent injection/XSS by using input validation
3. User Security
a. Okta is used for user validation - same standard as Iowa State University

2.4.2 Future work addressing risks

1. Limit server brute force attacks by banning IP addresses with too many illegitimate ssh attempts
Restrict server access to certain IPs (was not feasible on the ISU campus since IPs change)
Information privacy

a. Mask user information to a certain extent when displaying graphs with smart meter
locations, using pinpoint markers only for administrators, and a general heatmap for all
users

4. Market

a. One of the largest concerns is preventing users from spoofing production data. This is a
large concern and will take a lot of work. Some options include:

i.  Document user’s max production capacity, though this does not prevent them from
overstating production while staying below their max production capabilities
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ii. ~ Compare production relative to other geographically close producers with
similar/identical production sources, while also factoring outside conditions

1ii. Implement anti-tampering monitoring on the meter

3 HIGH-LEVEL DESIGN

In this section, we discuss the various tradeoffs that we investigated, followed by the description of the
overal design.

3.1 DESIGN TRADEOFFS/TECHNOLOGY CONSIDERATIONS

We researched various ways to go about solving our problem. Those that received the most notable
consideration are detailed below.

3.1.1 Software
The main technologies that we considered using for our marketplace are as follows.
Ethereum Approach

This approach entails using the open-source ethereum (blockchain) platform to develop smart
contracts for buying and selling energy. Using ethereum, we could utilize their stable Solidity
language to implement our smart contracts. The advantage here is there are many projects built
with this stack allowing for more resources and support.

Hyperledger Approach

This approach consists of using the open-source hyperledger (blockchain) platform, which is newer
compared to the more established ethereum approach. Hyperledger is supported by larger
organizations such as IBM. This allows the technology to stabilize long term with the backing of a
large company, compared to the burn-out many open-source projects that lack a large backing
organization have seen.

Traditional Marketplace Approach

Another considered alternative was to use a traditional marketplace instead of a blockchain
implementation, allowing us to provide cheaper transaction rates to our customers. This is because
paying for each blockchain transaction is a fairly expensive overhead ($0.20-0.40 in the last 6
months) to selling energy. Implementing a traditional marketplace also has the advantage of being
simpler and easier to implement.

Despite its increased security and transparency, we chose to move away from the use of blockchain
technologies due to its bandwidth restrictions. Instead, we choose to pursue the traditional marketplace
approach for it’s cheaper overhead and simplified design.
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3.1.2 Hardware
The platforms which we considered for the smart meter are as follows.
Arduino
Advantages:
- Entire team has experience
- Multiple libraries and shields for Wi-Fi and other processes
- [/O system is the easiest
Disadvantages:
- Little learning in terms of team's intellectual growth
- Does not provide a strong IP story
Arduino would be best used if we encounter high I/O in our system while not requiring heavy web based
protocols. The shields and libraries are cohesive for simple Wi-Fi connectivity, but lack libraries for some of
the networking functionality that we require.
Raspberry Pi
Advantages:
- Easiest Wi-Fi connectivity process
- Experienced members on our team
- Many available built in libraries and add-on modules
- Allows web server code/processing
- Rolling new updates is simpler
Disadvantages:
- Does not provide a strong IP story
- Single point of failure on the system
-Takes a significant amount of time to boot up

A Raspberry Pi system would allow us the greatest extensibility and code reusability. Many of the Arduino
advantages are also present with the Raspberry Pi. By connecting direct, we can remove a node that would
be required for computational logic (cloud or local server) that both the Arduino and PCB require.
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PCB/Embedded

Advantages:

- Improve our knowledge of fabrication and low level hardware/software
- Capability to be fastest processing

- Least amount of resources used - power/computation

Disadvantages:

- Learning curve is highest
- Development cycle is the longest
- Documentation for our application is minimal

In going the PCB/Embedded route we had the opportunity to become more adept in a technology our team
is not familiar with. This would have also provided us the best intellectual property scenario as the
technology is not easily reproducible in code. The drawbacks are large in terms of development cycles and
resources that we can tap to work through any issues. Many otherwise seamless processes such as Wi-Fi
connectivity would be more difficult on this platform. However, the finalized product has the potential to be
faster while consuming less resources.

We also explored options that would have allowed the device to operate indepently of the user’s home
internet service, such as local connections like Bluetooth or Zigbee, or cellular connectivity. Ultimately, we
decided that this method would come at too great a financial cost to the user for it to be attractive to them.
Furthermore, internet connectivity is the implementation strategy with which our team is the most familiar.

The approach we eventually chose to implement utilizes a Raspberry Pi for the hardware computing module
that communicates with the circuit boards through a mounted ADC. The printed circuit boards
continuously read energy input and output and pass that data through the ADC to the Raspberry Pi. The
data is then passed to the online servers to be used for buying and selling. The Raspberry Pi has built in
capabilities which provide the needed support for hardware communication via SPI transactions and
software communication via server posting. In the prototype form, the Raspberry Pi and PCBs
non-intrusively connect to the existing power buses, serving as a smart meter that can coexist with the
existing traditional meter. Power usage is tracked and data is transmitted to the server.

In the end, we chose the design approach that would be the most intuitive to implement rather than one
that was focused on being as cost-effective or market-ready as possible.

3.2 OVERALL DESIGN

After considering the above approaches, we determined that the best plan of action was to implement our
marketplace through a traditional marketplace approach and use a Raspberry Pi approach for our smart
meter, while adding PCBs for some additional data filtering and processing. There is a PCB dedicated to
converting the mains voltage into a source useable for the sensitive components of our smart meter and
another PCB dedicated to measuring and filtering the data in the mains into a form readable by our
Raspberry Pi. In Figure 2, we visualize an overview of our system. Each user/property uses the smart power
meter to monitor the flow of power to the property and from any power-generating devices, such as solar
panels or wind turbines, to their power company. Each smart meter will be linked to a user’s account via the
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web application. A user will create an account via the web application and link their device ID through the
settings tab. A user for any given property may access the marketplace and view analytics in real-time about
their energy consumption through the web or mobile application.
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Figure 2: High level system diagram
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Figure 3 shows our DevOps strategy. We have a production environment of the application that all users will
see and use, individual environments for each of the software developers on the team to work in, and a
staging environment for testing changes before pushing out to the production environment. The user
information will be stored in MongoDB databases in Amazon Web Services (AWS), and the web application
is deployed on Heroku.
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Figure 3: DevOps diagram illustrating the design and development process
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[oT Smart Meter

Based on research about products that are readily available for a reasonable cost, we determined that it was
in our best interest to begin our development of the smart meter on a module that already has basic
functionality like a Raspberry Pi. The basic block diagram describing the major components and
functionality of the IoT smart meter is shown in Figure 4.

The Raspberry Pi was chosen over a standard Arduino because the Raspberry Pi is a more powerful device
and it is easier to program because it does not require as deep of a knowledge of embedded system
programming as an Arduino. Despite the price and power consumption tradeoffs, we see Raspberry Pi as the
best option because it is easier to debug and troubleshoot in the early stages of prototyping. The Raspberry
Pi also has a built-in Ethernet port which can make networking simpler.

For the current sensor, we are using the MASTECH MS3302 AC current clamps (with a voltage and current
range within our required operating conditions) feeding into a signal processing circuit and then passing
that information to the Raspberry Pi for networking. We decided on this method of implementation
because of its relative simplicity and the fact that it allowed us to compartmentalize the work for different
groups of team members. We acknowledge the fact that a long-term solution would probably have an
integrated current reading mechanism with higher accuracy, but at this stage of design, we are aiming for a
functional proof of concept.

Grid Line

Consumption

Transducer

Microprocessor

DINO Communication Module
DIN1

CH1 D1

ADC

Solar Generation

i

CH2 D2
Production

Transducer

Figure 4: A top-level block diagram of the smart meter basic functionality

Web Application and API

All relevant user data, including account information, energy usage statistics, and transaction details, is
stored in a MongoDB database on AWS. Our web application interacts with our MongoDB database via an
API. The app also interacts with Okta for account creation and creating user tokens on login. A component
diagram of the web application can be seen below in Figure 5.
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For our software design, we are implementing a web application using the MERN (Mongo, Express, React,

Node) stack, an open source end-to-end dynamic application framework. This MERN stack includes a

MongoDB database for data storage and manipulation. Express is a back end web application framework

that runs on top of Node]S. React is a JavaScript library that allows us to build a dynamic user interface for

the web application and React Native for the mobile application. Both interfaces render based on the

current state of the application. The use of React and React Native allows for sharing logic across platforms

as well as the back-end. Finally, Node]S is an open source server framework. The app is deployed using

Heroku, which makes running our Node]S app fairly straightforward.
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Figure 5: A component diagram of the web application

3.3 CHALLENGES

1. Figuring out how to correctly price the energy to have consumers and producers enter and exit the
market for a steady-state goal.

2. Although the MERN stack is robust, there is a relatively small amount of documentation for this

software stack, since it is fairly new. This means that debugging issues takes more effort than if we

were using less modern, but more tested, technologies.

3. One of the largest concerns is preventing users from spoofing energy production data. This is a
large concern and will take a lot of future work. Some options include:
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a. Document user’s max production capacity, though this does not prevent them from
overstating production while staying below their max production capabilities

b. Compare production relative to other geographically close producers with similar/identical

production sources, while also factoring outside conditions

c. Implement some sort of anti-tampering monitoring on the meter

4 ESTIMATED RESOURCES AND PROJECT TIMELINE

In this section, we discuss the monetary, time, and personnel resources required to complete the project,
including our timeline of task completion.

4.1 PERSONNEL EFFORT REQUIREMENTS

Task

Team

Effort
Required

Reference/Explanation

Program Smart Meter Display

Hardware

Low

The libraries available for Raspberry Pi

devices should make it fairly simple to

take in input and display output to the
user on the meter.

Coordinate Interfacing with
Web App

Hardware

Medium

This step will require effective
communication with the software team
on what data they need to receive and
what form it will come in.

Test Initial Proof of Concept
Prototype

Hardware

Medium

The focus of this step will be to ensure
that this version of the system has all of
the basic desired capabilities that are
needed for an early implementation of
the project. Essentially we will need to
make sure that we are able to reliably
acquire and transmit data.

Design PCB/Embedded Board

Hardware

High

To implement the hardware required
for this project from scratch, we would
need to acquire various individual
components and connect them on a
PCB. In addition, we would have to
write our own drivers for this board.

18




Order Board

Hardware

Low

Once we have the design completed,
ordering the board will just be a matter
of determining the best option to have

it fabricated

Test and Compare with
Raspberry Pi Version

Hardware

Medium

This step should just be a matter of
determining which aspects of
performance we will give the most
weight and comparing the two
implementations, including the effort
and cost that went into creating them.

Marketplace: Init Transaction

Software

Low

Transactions are a standard procedure
for applications to perform, and
initializing a request and posting it to
the marketplace should be
straightforward

Marketplace: Accept
Transaction

Software

Medium

We will need to do some extra
programming to deal with the timing
of when accounts receive payment,
such as using a holding pot until the
transaction is complete

Smart Meter API: Power
Transaction Signal

Software

High

Requires blockchain/smart meter
interaction, which will require
collaboration between teams and
probably more testing, since this is
essential to our project

Web App: Create
Account/Register Smart Meter

Software

Medium

We will tie each account to an
Ethereum account, so account creation
will be handled elsewhere; however, we
will need to handle linking an account

to a smart meter

Web App: Login

Software

Low

We will just need to pass login through
Ethereum, so there should be little
programming required for this step

Web App: View Transaction
History

Software

Low

This will simply require some queries
to the MongoDB database, followed by
displaying that data in a meaningful
way
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Web App: User Analytics Software Medium Retrieving the information that we
need will be easy, as will displaying the
raw information to the dashboard.
Depending on how complex we want
our analytics to be, there is potential
for more intensive algorithms to write
and program

Web App: Automated Software High This task will probably involve some
Transaction Matching form of artificial intelligence, or a very
efficient matching algorithm.
Optimizing our strategy will be key,
since this process may run for
hundreds of users at a time, if our
market caught on

Perform End-to-End Software Medium We will want to be thorough with our
Acceptance Tests tests, and will probably need to do
quite a bit of debugging and refining,
but if our designs are well thought out,
and each previous task goes well, we
should not have any major changes to
make

4.2 OTHER RESOURCE REQUIREMENTS

The main parts required for this project are on the hardware (smart meter) side, as this is the physically
tangible part of the project. For the early prototype, we needed a Raspberry Pi module and set of current
clamps to acquire data. Along with an analog to digital converter and a few passive components (wires,
resistors, capacitors), these are the baseline components required to obtain the fundamental data. This
relies on the assumption that the voltage is reasonably steady, so a current reading can give us accurate
power consumption data.

For the full final implementation of the smart meter, there is a large number of components required. Links
to our two parts orders are provided below.

First parts order: 2/28/18

Second parts order: 4/27/18

While the number of components is large, most of them are inexpensive so the total price of the meter can
compete with existing smart meter solutions (see 4.3 Financial Requirements)

In addition to the components, we also needed to have PCBs fabricated. This required the use of the Eagle
PCB design software so we could send the needed files to the PCB fabricator.
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https://docs.google.com/spreadsheets/d/1K0YJSQtrs9wIjgDO-lYNBr0yPqImtw-k-f7VEaqau1g/edit?usp=sharing

The software team will require the React, Node, and Express libraries to run local unit tests and generate
local development environments for the web application, as well as an AWS instance to run the software
backend.

4.3 FINANCIAL REQUIREMENTS

Because the purchasing of hardware for this project was done through the Electronics Technology Group, we
do not have exact numbers regarding the prices of our various components, so some of the following data is
based on estimation. The main components that had to be purchased for our project are the following.

MASTECH MS3302 AC Current 0.1A-400A Clamp Meter Transducer True RMS
at $17 x 2 = $34

Justification: To measure the current (and therefore power) on the production and consumption
lines

Raspberry Pi 3
at $35x1 = $35

Justification: To be able to process and post our acquired data to the server. . Import our logic
libraries and subsequent code base.

PCB + miscellaneous components

Power board atsisxi1=$i15
Data acquisition board at $50 x1= $50
Components at $40x1= $40
Total: $105

Justification: To carry out our desired functionality of being able to power the module from the line
and amplifying and filtering the data

Enclosure
At $10 X 1 = $10

Justification: To contain all of the hardware components of the meter and keep them protected from
damage, tampering, or general wear and tear which could cause connections to go bad

Total Cost: $184

It is worth noting that these price estimations are based on the quantities in which we bought the listed
items. For larger-scale production of the meter, high-voluming purchasing could cut down the per-unit cost
drastically.
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4.4 PROJECT TIMELINE

A large portion of the success of our project was centered around adhering to our timeline. Although at the
time of creation of the timeline many of our tasks were in the preliminary stage, it was vital for us to use this
tool to maintain steady progress. An overview of our major tasks and milestones is shown below, while the
more detailed version is shown in the attached Gantt charts for both first (EE/CprE/SE 491) and second
semester (EE/CprE/SE 492) (Figures 6 and 7, respectively).

4.4.1 First Semester

Class Deliverables

1. Project Plan
2. Design Document
3. Team Website

Hardware Team (Jack, Joe, Arun)

Research parts and determine platform to be used

Create tentative parts list with pricing

Obtain current sensor and meter platform (Raspberry Pi)

Research available software libraries for Raspberry Pi module we are using

Determine preliminary version of desired capabilities of meter (sensors required, data stored, etc.)
Initiate programming of data acquisition and transmission capabilities

SMUIE VRN

Software Team (Brendon, Noah, Alec, Arun)

-

Experiment with Ethereum and creating smart contracts
Experiment with MERN stack

Web app user interface mockups

Component diagram for web app

Component diagram for smart meter API

Basic web app development environment setup

oV pWN
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Figure 6: Snapshot of the semester 1 Gantt chart

4.4.2 Second Semester

Class Deliverables

Working prototype smart meter

Basic functional web application

Working energy marketplace implementation
All components successfully interacting

AW oN o=

Hardware Team (Jack, Joe, Arun)

Program user interface

Coordinate interfacing with web app

Test initial proof of concept prototype

Design PCB/embedded board

Order board

Test and compare with Raspberry Pi version

Program data acquisition and transmission capabilities

N ow s W

Software Team (Brendon, Noah, Alec, Arun)

Base web app functional

API components for communicating between web app and smart meter
Create account functionality through web app

Login functionality through web app

View transaction history functionality through web app

Initiate and accept transaction functionality through web app

View energy consumption analytics

Now s w oo
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8. User smart meter data is automatically aggregated
9. (Stretch goal) Automated transaction matching

GANTT CHART: Semester 2

Jack Myers, Brendon Geils, Arun Sondhi, Noah Eigeneld, Alec Dorenkamp, Joe Staudacher |

A e Goce Trajcevski DATE 4125118

TASK TASK COMPLETE ——
NUMBER TASKTITLE TASK OWNER  Red=no Green=yes| M T W| R F M T W R| F M T W/ R F M T W R F M T W R F M T|W R F|/M T WRFMTWRFMTWRFMTWRFMTWRFM
1 Class delverables
11 Poster Al
12 Final Presentation Al
2 | Hardare tasks
2a LeD Screen Jack, Joe, Arun
22 Hardware Fitering Jack,Joe, Arun
23 Improve Transducer Jack,Joe, Arun RN
24 " Jack, Joe
a5 Smart Meter Enclosure Jack,Joe T 111
s I I I
31 Secure APIfor posting data Alec
32 Aec
33 Aec
34 Web App Security Aec
3s Consumer Facing Graphs Noah
36 i Noah
38 New User Signup Nosh, Brendon
39 New User Configuration Noah, Brendon
310 ding (High i Brendon 1
™ Trading (Simulation) Brendon T e
312 Trading (User Inerface Inputs) Brendon
3 Trading (Core Trading Feature) Brendon
334 Trading (Edge Cases) Brendon RN
335 Trading (Security & Privacy) Brendon T e
3 : An Lt
318 Netive App (Adapt existing components) Aun HEEEEEEEEE
335 |NatveApp e Avn [T T T FTETrTTTI]
320 Native App (Adapt modifiedinew components) Anun TTTTT T T T I T T T T T T T T T
Figure 7: Snapshot of semester 2 Gantt chart

Full Project Timeline

5 DETAILED SYSTEM DESIGN

We now present a detailed design of our software and hardware systems.

5.1 SOFTWARE

Figure 8, below, displays a detailed component diagram for all of the software operating within our system.
The diagram is divided into several large components: the Heroku deployment (which is divided into a
sub-component for the front-end client and another for the back-end application), mobile app, AWS server,
and the smart meter’s logic module. Within each of these components can be seen the sub-components,
and the methods in which the sub-components interact with each other.
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Figure 8: Detailed diagram of software components on the smart meter, mobile application, and web
application




5.1.1 Web App

[/O Specifications
Web application output and input, categorized as user input and non-user input.

User input:
e User account information, including login credentials, smart meter information, buying and selling
price thresholds, location information

Non-User input:
e Smart meter power production and consumption data

Output:
e Energy consumption and production charts, smart meter location map, downloadable data in csv,
feedback on change of user settings

User Interface

The interface was designed with accessibility and cleanliness in mind. All information can be reached
within one to two clicks and is easily seen and understood without the need for large sections of explanatory
text. As shown in figure 9 below, the Ul is minimalistic in style without lacking in form or function. The

live web application can be viewed at: www.myopenenergy.com
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http://www.myopenenergy.com/

Account Info

Name:

Noah's Test User

Email:

n-user@test com

Registered Smart Meter

SBUFKSSMIMKWCAPE  Device ID

Purchasing Off

Purchase Price

01 cents / KWh
Max Purchase
100 Watts
Save Purchase Price
Selling Off
Sell Price
0 cents | kWh

Save Sell Price
Download Consumption Data

Figure 9: A view of the settings page, from which users can configure their accounts

Account Management

The web application facilitates a user’s account registration and configuration, so that the user may view the
data associated with their device. To aid in account management, the web application interacts with Okta,
which stores a user’s name, email address, and unique identifier, and creates an authentication token upon
sign-in to keep track of a user during the current session. Upon successful account creation, the unique
identifier from Okta is stored in a MongoDB document for referencing device data and account settings
associated with that user.
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¥ OpenEnergy About

Create New User

First Name

Last Name

Email Address

Password (at least 8 characters, a lowercase letter, an uppercase letter, a number, no parts of your username)

Confirm Password

Create Account

Figure 10: The account creation page on the web application

Once a user has created an account, they can register a device via the device ID. Though we only created one
prototype for the smart meter, our goal is that each smart meter would be configured with its own device ID,
either shown to the user through the smart meter’s display, or through accompanying literature. To register
a device and start viewing one’s data, a user need only register the device ID through the settings page. If a
device ID is already registered to an account, it cannot be registered again; however, registered devices can
be updated at any point. At this time, only one device ID may be registered to an account, though we expect
this to be an expansion point in the future.

The settings page also allows users to modify their purchasing and selling configurations. The usage of these
values is described further down, within the Marketplace section.

Rather than navigating our web application to view all of their data, some users may wish to format and
analyze their usage data directly. For this purpose, users may download their power consumption data from
the settings page. A button at the bottom of the page will download a user’s consumption data as a .csv file.

Data Display

Users may enter their device’s location and view the locations of other users’ devices through the map page.
At this time, one’s own device is displayed and labeled, and all other users’ devices are listed as anonymous.
In the future, once an admin construct is added, specific device locations will be limited to admin views
only, with standard users receiving a masked map, grouping locations by city or region.
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Location functionality interacts with two APIs: Mapbox GL JS and Google Maps JavaScript API. Mapbox GL
JS implements the overall device location map found in the map page, and Google Maps JavaScript API
implements the searchable map found in the add-location page (reachable through the map page). The
Google Maps library is accessed through the google-maps-react module, which supplies a React JS wrapper
for accessing Google Maps interfaces as React components.

DEVICE MAP

MAP SHOWING ALL CURRENT DEVICE
LOCATIONS.

Add Your Location

Figure 11: A view of the web application map of device locations

For users who wish to view current information about their consumption usage, we implemented a simple
graph on the dashboard which displays a real-time readout of their power consumption. This graph updates
every three seconds, as do the energy statistics displayed above it. These statistics show the chart average,
real-time usage, seven-day, month, and year averages. At the time of this report, energy production does not
have a real-time graph implemented; however, this is a simple matter to expand due to the similar storage of
production data.
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% OpenEnergy Dashboard  About  Map

Consumption Dashboard

The following energy data is simulated to depict real time consumption. Given the ability to easily visualize and track energy usage a consumer will on average reduce their
consumption. In future iterations the Open Energy team will allow the consumer to their cor data over various time intervals to analyze usage for energy and cost
reduction opportunities.

Energy Statistics
Chart Average Real-Time 7 Day Avg Prev Month Avg Prev Year Avg
1260.9 W 1075 W 1215.1W 1215.1W 1215.1W

1,400 — — —~ —

1,200 -

1,000 —

Watts

600 —

Settings

Logout

Figure 12: A view of the web application user interface
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5.1.2 Mobile App

Carrier & 2:17 PM C_24
Account Info
Name: Arun Sondhi

Email: aksondhi@gmail.com

Purchasing On

Purchase Price

‘0.1

Max Murchase

Save Purchase Price

IU‘|

Selling Price

Save Sell Price

Dashboard About Settings

Figure 13: A view of the mobile application user interface

Account Management

The mobile application is very similar to the web application. It also interacts with Okta to verify user
interactions and authenticate upon sign-in. A user is not able to sign up or add a device via the mobile
application. They are able to manage their purchasing and selling configurations through the settings tab.

Data Display

Users are able to view their consumption and usage via the dashboard in real-time. The data updates every
three seconds and shows real-time usage, seven-day, month and year averages.

5.1.3 Backend
Data Management

The backend of the software system is Ubuntu 16 virtual machine on AWS (Amazon Web Services). This VM
includes a MongoDB instance that holds all the important client data, including basic account information
(not including user credentials, which is managed using Okta), user settings, and device data. The web
application sends and retrieves information from this database using get and post requests secured via SSL.
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Clients’ smart meters use secure post requests to send information to the database. This posted information
is authenticated from both directions using an API key to authenticate the smart meter and a public-private
key combination to ensure that only the server can read posted data.

Data aggregation is performed every three minutes by a python Cronjob to reduce smart meter
consumption and production posts (3 second intervals) into a minimum of 1 hour and maximum of 2 hours
of 3 min chunks of data, between 7-8 days of hourly data, and older data into daily chunks, while always
maintaining at least 1 minute of 3 second data to allow the user to monitor real time statistics. This
scheduling is fairly arbitrary, and the code was made in a very modular way to allow easy manipulation of
these time boundaries in the future. Currently, the size of the data stored for each smart meter is ~250
records to hold data from the last 8 days + 1 record for every day the smart meter was in use before then.

5.1.4 Marketplace

Key terms

Producer - entity that puts energy into the grid and is signed up with Open Energy to sell at the OE (open
energy) price

Consumer - entity that agrees to purchase energy from the grid at the OE (open energy) price
OE - Open Energy

OEIP - Open Energy Internal Price

OEP - Open Energy Price

High Level Overview

Producers and consumers enter and exit the market purchasing and selling at the OE price. The OE price
fluctuates given the market forces.

Transaction Cost

The cost for each transaction will vary based on the average distance between the producers and consumers.
In our MVP design we will have a fixed transaction cost. The code design should accommodate a future
where the transaction cost fluctuates.

Open Energy Internal Price

The open energy internal price (OIEP) is set by OE to ensure the market is stable given the number of
producers and consumers in the market. The OEP is a value used internally to calculate OEP. The following
scenarios effects the OEIP:

1. # of producers rises
a. OEP decreases

2. # of producers falls
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a. OEP increases
3. # of consumers rises
a. OEP increases
4. # of consumers falls
a. OEP decreases
Open Energy Price - OEP
The following formula defines the OEP.
OEP = OEIP + Transaction Cost / 2 + OE Fee
Purchase Energy
To purchase energy, the user must do the following:
1. Open an account with OE at http://www.myopenenergy.com/
a. Have an admin sign into Okta and create the account

2. Enable purchasing in the settings page of OE www.myopenenergy.com/settings

Marketplace System Function

Every five seconds the system should take a poll of all the users that are willing to purchase energy at or
below the OEP and all users that are willing to sell energy at or above the OEP. These users are the active
set. The active producer set is aggregated to find the total energy provided during the five second interval.

The active consumer set is then aggregated to find the amount of maximum consumed energy. The total
energy from the active producer set is then distributed among the active consumer set (see
distributeConsumer).

Functions

distributeConsumer(float total_energy, array active_consumer_set)

The use of the distribute_consumer() function is to take in the total amount of energy from the active
producer set and the active consumer set, process the set and then return any left-over energy (see
handleExtraEnergy).

The processing will first find the average distributed power: total_energy / length(active_consumer_set).
This will be distributed by charging each active consumer up to the maximum they have allocated at the
current OEP. If the maximum is reached the next consumer with a high maximum will have the energy
rolled over.

handleExtraEnergy(float extra_energy)
This function will sell all extra energy back to the grid at the net-metering rate. Documenting accordingly.
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5.2 HARDWARE

The high level design of the hardware system is shown in Figure 14, composed of three main modules. These
modules are the computing module, the data acquisition circuit board, and the circuit board used to power
the meter. The data acquisition board and the device power board were the most design-intensive modules
of the hardware system as they were fabricated printed circuit boards (PCBs) designed in Autodesk Eagle.
Each PCB went through two iterations of testing and design. The computing module was the bridge
between the hardware and software design processes.

P c
o
—
VAC1 VAC2
+ +
Data
Smart Meter Acquisition
Step Down LAAA AN | Enclosure Board
Transformer Prod. Cons. Cons. Current Prod. Curren
VAC VAC Data Data
Data Filtering
Power Board l l

AC-DC Conversion

5V DC

Clock & SPI (from R. Pi) Data (to R. Pi)

Raspberry Pi
(Computing Module)
Data

Software Processing .
& Server Posting Ribbon Cable

~

=

Figure 14: A high-level overview of the components within the smart meter

5.2.1 Data Acquisition Board

The purpose of the data acquisition circuit board is to take in and filter data from two sources: the output
from the current clamps used to read the total current draw, and the mains voltage itself. The output from
the current clamps is a small AC voltage (on the order of roughly 10-500 mV) that corresponds directly to
the current running through the mains. This voltage signal is then filtered and smoothed to form that could
be read by an ADC and transferred to the Raspberry Pi for computation. The schematic of this filtering
circuit is shown below:
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Figure 15: Schematic of the current reading circuit on the acquisition board

This schematic shows the input of the current clamps at the terminal on the far left and and the input from
the power board with the terminals at the top. For the output of the circuit, it is connected to terminal 2 of
the ADC, which leads to header pins connected to a ribbon cable that transmits the data over SPI to the
Raspberry Pi (computing module).

The first stage of the circuit is an active low-pass filter, with a gain of 15 for signals in the passband. The
cutoff frequency is 106.1 Hz, which allows us to filter high-frequency noise that is well above the expected
signal output frequency of 60 Hz. The goal of this stage is to filter out any noise present in the signals from
the current clamps, as well as amplify this small signal to a range that can be more accurately read by the
ADC, which has a reference voltage of 3.3V. The second stage is a buffer that isolates the first stage from the
third stage. The final stage is a precision rectifier with a smoothing capacitor that takes the AC signal and
converts it to DC. The goal of this is to provide a consistent signal to the ADC so reading the value at any
given time would be indicative of the present current flow.

As referenced earlier, the second part of the data acquisition board is dedicated to reading and filtering the
mains voltage. The main component of this circuit is the isolation amplifier. It is used to create a barrier
between the mains voltage and all of the other components so that they are protected from high voltages.
The schematic diagram of this circuit is shown below.
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Figure 16: Schematic of the voltage reading circuit on the acquisition board

The op-amps and the input side of the isolation amplifier in this circuit are powered off of the same power
source as the other circuit, the power board, but the isolation amp presented a problem in that it required
two separate power supplies. While the supply from the power board is usable for the input side of the amp,

we had to figure out a way to get another isolated power supply for the output. This required the

implementation of another transformer and rectifier circuit separate from the one on the power board. The
two sets of terminals on the left side of the schematic represent the voltage input from the mains with the
top set going to the aforementioned transformer, and the bottom set going into a voltage divider before
being used as the input for the isolation amplifier. The output of the isolation amplifier leads to a filtering
circuit and then goes to the input terminal 1 of the ADC. The final layout of the entire data acquisition board

is shown below.
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Figure 17: Layout view of the data acquisition board

5.2.2 Power board

The power circuit board is much smaller compared to the data acquisition board and contains fewer
components. Its only purpose is to convert 12V AC from the main power transformer to a DC voltage that
can be used to power the Raspberry Pi and the active components of the data acquisition board. This
required the implementation of a dual-output full-wave rectifier and the use of positive and negative voltage
regulators. The following figure shows the schematic of the power PCB:
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Figure 18: Schematic of the circuit on the power board

The input on the left is from the secondary of the main transformer and leads to the input of the full-wave
rectifier. The output of the rectifier leads to the two aforementioned voltage regulators: one that outputs a
+5v DC supply, and one that outputs a -5V DC supply. Both supplies lead to a screw terminal used to power
the necessary components on the data acquisition board and the +5V supply also leads to a USB port from
which the Raspberry Pi can be powered. The final layout of the power supply PCB is pictured below:
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5.2.3 Computing Module

The computing module of the hardware system consists of a Raspberry Pi that takes in the data and power
from the PCBs, and transmits current consumption data to the platform developed by the software team.
The software on the Raspberry Pi had three functions to carry out: acquire data from the ADC, display basic
information to the user, and post data to the server. Once the raw data was acquired from the ADC and
PCBs, the Pi was responsible for calculating the line current and voltage values represented by that data.
These values are then displayed on a screen and posted to the servers through a SPI transaction. Once the
transaction is completed, the computing module has fulfilled its purpose.
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6 TESTING AND IMPLEMENTATION

Successful and thorough testing is necessary to implementing our solution correctly. The methods we used
to test our design both in terms of individual units and integration testing is detailed in the following
section.

e Manual testing
o Frontend Web/Mobile
o Backend
o Hardware simulation and testing boards with various inputs
e Integration testing
o Using frontend to test integration between front and back end code
o Results of test actions confirmed in database
o IoT uploading testing through front end data views and database updates

6.1 UNIT TESTING

The first main tests that a successful implementation has to pass are unit tests.
6.1.1 Software

There are three software components that needed to be tested. These include the MongoDB database and
functions to add and change data in it, the web application, and the mobile application. The API methods
written to interact with the MongoDB database from the web and mobile applications were unit tested. Each
of the web app’s pages functionality, usability, and performance was tested to ensure that everything works
as intended and that there were not any simple errors preventing users from functioning properly. Finally,
the mobile application was unit tested in a manner similar to the web application.

Web Application
Account Management

Account creation, login, and device and location registration were tested to ensure that correct inputs would
be accepted, and that incorrect inputs would be rejected or handled accordingly. For each required entry, we
checked that invalid strings could not be submitted or prompted the user before attempting to submit.
Within the add-location page, the latitude and longitude will only accept legitimate coordinates; any
coordinates outside the valid range are automatically dropped or raised to the upper or lower limits,
respectively, when the focus moves away from those text boxes. For device registration, we make sure that no
duplicate device IDs can be entered (functionality that we also tested). Similarly, no two accounts may share
the same email address; this functionality is implemented through our Okta app, but we made sure to test
for it as well.

Data Display

The data download functionality was robustly developed. It is actively disabled if the user information
required for data access is not available, or correct, and was tested successfully on a variety of users and data
volumes.
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Marketplace

We did functional testing of the marketplace, with aspirations to have specified unit tests for the system.
Our proof of concept did not require these tests so we have noted them for the client for further
development.

Web Server
Backend Data Management

Data aggregation was tested thoroughly, and aggregates data based on strict time boundaries. Testing was
done with a variety of input sizes and volumes, multiple time ranges, and devices. The max volume of
records that we aggregated was just over 2 million unaggregated records from one smart meter, which took
10 min to aggregate, which was then reduced down to ~250 records. At this rate, we could continuously
aggregate the data from 8000 smart meters in 10 min.

Data posting was tested first by validating that information posted and received. We ensured the database
was always complete and accurate, and the security of the data is proven by the methods and algorithms
used to secure the data.

Mobile App

Login and all user input was tested to ensure that valid requests were made and that invalid inputs are
prevented. This was done by using authentication libraries provided by Okta as well as using type specific
inputs to prevent malicious data. Retrieval of the most recent statistical data and marketplace data was
verified and crossed with the web application.

6.1.2 Hardware

For our project to be successful, it is imperative that we are able to acquire power consumption
measurements in the same way that existing power meters do. Given this, most of the goals and tests
associated with the hardware are functional--they must work for our project to be complete. The main
components are as follows:

Data acquisition board

A fundamental requirement for our project is to be able to get accurate and consistent current and voltage
readings in order to have a power meter that has a similar level of precision to options that are currently on
the market. After doing some preliminary research, we were able to come up with an initial design for
amplifying, filtering, and processing the signal generated by our current and voltage measurement
mechanisms. The first step to determine if our design would properly function was a simulation of the
schematic in a basic form of SPICE software.
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Figure 20: A schematic of our circuit design that we simulated. This portion of the circuit is for filtering
and amplifying the signal from the current transducer.

We adjusted some of the resistor and capacitor values to determine which would give us the optimal desired
behavior in terms of amplification, smooth filtering, and speed of response. This simulation also helped us
catch a problem in our initial design, as we needed to add a buffer between the two main stages of the
circuit to avoid undesired feedback effects. Once we were confident with the fundamental design, we
moved onto testing the circuit with real components on a breadboard.

We also did similar testing on the voltage reading part of the board, with the circuit simulation shown
below. Before actually hooking up live 120V or 240V to our circuit, we directly hooked up the small signal
that would be produced by the voltage divider to the input of our isolation amplifier which fed into the
filtering circuit. From here, we were able to confirm that the isolation amplifier and filtering components of
the circuit worked correctly, so as long as the voltage divider worked correctly, we could know that this
subcomponent of the circuit would work properly for reading the line voltage.
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Figure 21: A schematic of the simulated voltage reading circuit from the output of the isolation amplifier
and prior to the ADC input. This portion of the circuit is for smoothing out the signal from the isolation
amp to a signal that is appropriate for the ADC.

Breadboard testing was fairly straightforward, but it helped us to confirm that any assumptions or
approximations made by the simulator did not cause a discrepancy with the real behavior of the system. We
built the circuit on a breadboard and made sure that it behaved the same way as the simulation. This was
helpful in two ways. First, it allowed us to know that any issues that we faced with the PCB were likely
because of bad soldering or bad components because we had already checked that the circuit would behave
as desired with real components. Second, it allowed us to gain insight on what various signals in the circuit
would look like if there were bad connections. For example, we were able to see what symptoms a bad
connection on one of the op amps would have, which helped us to identify this behavior in the real board.

Before sending the board out, we used the built in Electrical Rule Check (ERC) and Design Rule Check
(DRC) in the Eagle software that we used to design the board to make sure that we were creating a usable
PCB. The main testing came once we actually had the physical board to work with. To test the final board,
we used an oscilloscope to measure the signal at various points in the circuit to make sure that things were
behaving as expected. This was especially important because this circuit had a mix of small AC signals and
large DC signals, so reading with a multimeter would only give us a limited amount of information. We
tested various nodes on the circuit to check that the signal there was expected. This was crucial in the
debugging process, as it allowed us to determine points of failure in the circuit. This helped to find and fix
issues like floating solder pads and cold solder joints. We were confident that the final board was working as
expected when we tested the voltage at various important nodes and confirmed that it matched the
simulations.
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In addition to the analog data processing part of the circuit, it was also key for us to test that the header pins
of the circuit were wired properly such that we could connect a ribbon cable to our board and the Raspberry
Pi and be able to communicate via the SPI interface. The first way that we tested that these connections
were wired properly was connecting the ribbon cable between the two boards and using a multimeter to run
a continuity test between the ADC pins and the header pins on the Pi that we needed to be connected. After
we confirmed that the connections were as expected, we checked to see if we could read data. When we
were able to print out the readings in software, this confirmed that things were connected properly to
communicate via SPI between the Pi and our ADC.

Power Board

The power board had a significantly smaller number of components, so in some ways it was easier to test
than the data acquisition board. However, we were dealing with high voltage signals in some parts of the
circuit, so we were at a much greater risk of either hurting ourselves or damaging the board. Because of this,
it was especially important that we were confident in our design before trying to build it. Similar to the data
acquisition board, we started off with a SPICE simulation.

Figure 22: A schematic of our initial circuit design for acquiring power from the line. This part of the
circuit produced a +5V source and a -5V source for powering the other board as well as the Pi.
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This circuit did not require too much testing of the high-level design, because AC-DC converters are very
well defined with ample resources available for working with them since they are so ubiquitous. Our main
concern was making sure that we could implement the circuit in a safe and reliably way. The most important
part that we had to make sure we were doing safely was on the live 120V side. To do this, we created the
temporary transformer setup shown in Figure 23. This gave us a secure platform where the high voltage
connections were insulated, only leaving the secondary side of the transformer (at a safe voltage of 12VAC)
exposed.

Figure 23: Main 240-12VAC transformer on testing platform

We ordered the board after making sure that our design met the Eagle DRC and ERC tests. Using our
transformer platform, we connected the secondary of the transformer to our board. Once we had this setup,
this board was very easy to test functionality--if we had 5V and -5V at the desired outputs of the circuit, then
it worked. We ran into a few issues with this circuit, but they all seemed to revolve around bad components.
Probing the nodes in the rectifier component of the circuit helped us to determine where things were
failing. After replacing some diodes, we were eventually to get our +/- 5V outputs, as well as 5V on our USB
connector that would be used to connect power from this board to the computing module.

Computing module

As our computing module was a Raspberry Pi, a pre-existing device, this simplified much of the testing that
we had to complete. There were two main things that we needed to test.

First is the ability to accurately get a reading of the analog voltages from our data acquisition board. We
tested this by comparing the values read in software from the ADC channel over the SPI interface with the
values that we measured with a multimeter. We printed out the values that were read in software (converted

45



to analog) to the screen and compared them to the multimeter. After running tests on each channel with
various voltages, we determined that we were able to get an accurate reading of analog voltages. Because we
had already tested the analog data filtering on the board, at this point we were able to know that the data
that we were reading in software directly corresponded to the current and voltage that we were reading with
our transducer.

The other main thing that we needed to test was our ability to reliably post this data to our server. We were
able to test this using a unit testing scheme. Each unit test ensured a portion of the API was running and
responding as expected. We ran our unit tests locally to start and then on our staging instance of the API.
After the staging instance was deployed we tested the functionality through a staging environment API
request. This verified our server was accepting at the port we had the staging instance listening on.

6.4 INTEGRATION TESTING

While it was important that we had thoroughly tested the various modules of our project, it is crucial that
we are able to integrate these components cohesively for a successful final deliverable.

6.4.1 Software

Software integration testing was simple because the way in which we setup our software development
lifecycle dictated that it be performed continuously throughout the semester. Once unit testing was
complete, each software component was tested locally and within the staging environment to ensure that it
integrated nicely with the existing software components. When error-free, consistent behavior was
established, the software component was integrated into the production codebase, and its functionality was
further validated through testing with multiple users. Because the new software components were tested on
multiple MongoDB instances, as well as both local and remote (AWS) servers, integration was consistently
performed effectively and without incident.

6.4.2 Hardware

Integration testing for the hardware was straightforward. We had to make sure that the power board could
provide enough current to power the Raspberry Pi as well as the active circuitry on the data acquisition
board. We hooked all three of our hardware modules together with the key interfaces as follows:

e Power via the USB connector/cable to the computing module

e +/-5V via screw terminals to the data acquisition board for powering amplifier circuitry
e Ribbon cable from the data acquisition board header pins to the Raspberry Pi header pins

e Display hooked up to the I2C pins of the Pi
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Figure 24: The overall components that make up the smart meter. The main components are the power
transformer, power board, data acquisition board, computing module, and current clamps.

We had initially written the software for reading data, posting to the server, and driving the display as
separate modules, so we had to combine them for this integration testing. Similar to the previously
described testing, this testing was by and large functional. After some small modifications to the software
and the hardware, we were able to use our hardware to power directly from the line voltage, read data, and
post to the server. From there, we had to decide on an appropriate enclosure for the PCBs to rest in. We
chose an enclosure made out of ABS plastic for a lightweight and durable combination. The box utilizes six
screw-points to fasten shut securely and protect the circuits inside. The plastic of the enclosure is flexible
enough for holes to be drilled through it, allowing for the connections leading to and from the components
inside.
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7 CONCLUSION

Money is the primary motivator for many making energy decisions, and as of right now, there is not enough
of an economic incentive to prioritize the generation of renewable energy. Our goal is to develop
methodologies and tools that would enable an economic benefit in order to incentivize personal
installations of renewable energy. We aim to produce this economic benefit by providing a way to make or
save money from renewable energy via a marketplace implementation of peer to peer energy transactions.

We determined that our solution would require three main components:
1. IoT smart meter: for reading energy usage and verifying transactions
2.  Marketplace functionality: for facilitating secure transactions
3.  Web applications: for allowing users to interface with our system
We have created prototypes of our three main components and put them through heavy testing.

As of April 2018, we have a functional prototype that we hope to use as a proof of concept in order to gain
the traction to apply our solution at a large scale. Between the smart meter, user analytics platform, and
trading software, we have the vital components that are needed to show the benefits of this approach to
distributing surplus energy has over the existing methodology.

While there are groups like Grid+, LO3, and ConsenSys that have already made strides towards a similar
solution, we feel that our team is working at just the right time. We are able to learn from the mistakes of
our predecessors by taking what they would have done differently and applied those insights to our project.
While we are not the first to work on this type of project, we are early enough that we are not fighting
against any other groups that are dominating or monopolizing the market. We hope that our solution meets
the needs of the users at hand and takes strides towards increasing the worldwide consumption and
generation of renewable energy.

7.2 FUTURE WORK

As the project is handed off to Open Energy we are optimistic for the future work to come.

From a hardware perspective we would like the ability to send consumption and production data to our
system in a more fault tolerant manner. With the current implementation network errors would introduce
issues with clearing transactions for a client. Also, the communication protocol would be better suited as
agnostic to our board processing. This would allow us to use cellular, ZigBee or other communication
protocols in constrained environments. For example, a farmer in rural lowa might not have WiFi
connectivity. In this case a cellular connection may be more relevant.

From a software perspective we would like to allow more data visualizations and reports for the user. We
believe with more data visualizations our users could reduce their energy usage. Another point we would
like to add is dynamic transactional costs for the marketplace. This would allow us greater granularity in
pricing the cost of energy. The overall costs would thereby be reduced because the individual user would feel
the effects of further distance from the consumer, because they would pay higher transactional costs. The
current implementation divides the transactional cost evenly among the users, thereby taking the load off
distant producers or consumers. The final software improvement we are optimistic for is the ability to add
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an automation system to the software client. This would allow the laymen user the capability to easily install
this system and have it optimize the purchasing and usage of energy. Having a simpler solution would drive
adoption as well.
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8 APPENDICES

APPENDIX 1;: OPERATING MANUAL
8.1.1 Software

Setup/Test
Below are directions to run and test the back-end, front-end and mobile app.
Back-End

1. Execute 'npm install' from openenergy/open-energy
2. Execute 'npm run dev' (if using windows then run 'npm run dev-windows") to run the main server on
port 3000 and view it from the browser.

Front-End

1. Execute 'npm install' from openenergy/open-energy/react-src
2. Execute 'npm run dev' (if using windows then run ‘npm run dev-windows") to run the development
server for React on port 4200.

Mobile

1. Execute 'npm install’ from openenergy/mobile/okta-rn.
2. Execute 'npm run ios' to run the application in the iOS simulator.

8.1.2 Hardware

To set up the hardware, the connections pictured in Figure 19 need to be made.

Connections internal to the enclosure:

e Use a USB cable to connect the USB port on the power board to the micro-USB power in port of the
Raspberry Pi

e Use a ribbon cable connecting the header pins of the Raspberry Pi to the header pins of the data
acquisition board

e Connect the display (hanging towards the center of the Pi) to the six header pins on the opposite
corner of the ethernet port
Connect the +/- 5V and GND from the power board to the data acquisition board
Connect the secondary (top three pins) of the power transformer to their marked corresponding
pins on the power board

For a market-ready version of the smart meter, these connections would already be made and would not
require any additional work from the user.
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Connections external to the enclosure:

These connections entail the steps that someone who purchases our smart meter would have to follow. Most
likely, this installation would require a licensed electrician. For connecting to the mains voltage, one
possible solution would be to have a unit that fits in the slot of a circuit breaker and has wires that extend to
our meter.

e Connect the +120V, Neutral, and -120V into the corresponding port on the enclosure leading to the
voltage measurement and powering circuitry

e Plug the black and red connectors on the current clamps to the black and red ports extending from
the BNC connector on the data acquisition board

e (Clamp the current transducers around the main production and consumption lines

Other setup:

To initialize the smart meter functionality, run the simpledemo.py script on the Desktop of the Raspberry Pi
to begin acquiring data from the ADC, displaying the current power consumption information on the
display, and posting this data to the server. In a commercial application of our meter, this program would be
configured to run upon startup after the user had connected the meter to their Wi-Fi network.
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